ECE 447: Robotics Engineering Lecture 6: Forward Kinematics

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra) Benha University

Spring 2019

- 2 Basic Assumptions and Terminology.
- Onter a convention.
- Assignment of Coordinate Frames.

Table of Contents

Basic Assumptions and Terminology.

3 Denavit-Hartenberg Convention.

4 Assignment of Coordinate Frames.

A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.

In robotic manipulation we are concerned with two common kinematic problems:

Forward Kinematics

Dr. Haitham El-Hussienv

Inverse Kinematics

A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.

In robotic manipulation we are concerned with two common kinematic problems:

Forward Kinematics

Given: Joint Variables **q** (θ or d) **Required**: Position and orientation of end-effector, **p**.

$$\mathbf{p} = f(q_1, q_2, \dots, q_n) = f(\mathbf{q})$$

A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.

In robotic manipulation we are concerned with two common kinematic problems:

Inverse Kinematics

Given: Position and orientation of end-effector, **p**.

Required: Joint Variables **q** (θ or d) to get **p**

$$\mathbf{q}=f(\mathbf{p})$$

A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.

In robotic manipulation we are concerned with two common kinematic problems:

In this lecture, we will show how to find the **Forward Kinematics** of a rigid manipulator. Given the joints values and the pose of the end-effector is required.

Table of Contents

3 Denavit-Hartenberg Convention.

4 Assignment of Coordinate Frames.

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have n+1 links.

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have n + 1 links.
- We number joints from 1 to n, and links from 0 to n. So that joint i connects links i − 1 and i.

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have n + 1 links.
- We number joints from 1 to n, and links from 0 to n. So that joint i connects links i − 1 and i.
- The location of joint *i* is fixed with respect to the link i 1.

ECE 447: Robotics Engineering 6 / 24

• When joint i is actuated, the link i moves. Hence the link 0 is fixed.

When joint *i* is actuated, the link *i* moves. Hence the link 0 is fixed.
With the *ith* joint, we associate joint variable:

$$q_i = \left\{ \begin{array}{ll} \theta_i, & \text{ if joint } i \text{ is revolute} \\ d_i, & \text{ if joint } i \text{ is prismatic} \end{array} \right\}$$

- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- With the i^{th} joint, we associate joint variable:

$$q_i = \left\{ \begin{array}{ll} \theta_i, & \text{ if joint } i \text{ is revolute} \\ d_i, & \text{ if joint } i \text{ is prismatic} \end{array} \right\}$$

• For each link we attached rigidly the coordinate frame, $o_i x_i y_i z_i$ for the link *i*.

- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- With the i^{th} joint, we associate joint variable:

$$q_i = \left\{ \begin{array}{ll} \theta_i, & \text{ if joint } i \text{ is revolute} \\ d_i, & \text{ if joint } i \text{ is prismatic} \end{array} \right\}$$

• For each link we attached rigidly the coordinate frame, $o_i x_i y_i z_i$ for the link *i*. • The frame $o_0 x_0 y_0 z_0$ attached to the base is referred to as **inertia frame**.

• If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.

• If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.

- If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.
- The matrix A_i is changing as robot configuration changes and it is a function of the joint variables q_i
 i.e. A_i(q_i).

- If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.
- The matrix A_i is changing as robot configuration changes and it is a function of the joint variables q_i
 i.e. A_i(q_i).
- The matrix T_j^i is the homogeneous transformation that expresses the position and orientation of frame $\{j\}$ with respect to frame $\{i\}$:

$$T_{j}^{i} = \left\{ \begin{array}{ll} A_{i+1}A_{i+2}\dots A_{j-1}A_{j} & \text{if } i < j \\ \mathcal{I} & \text{if } i = j \\ (T_{i}^{j})^{-1} & \text{if } i > j \end{array} \right\}$$

• Suppose that the position and orientation of the end-effector with respect to the inertia frame are:

$$p_n^0, \qquad R_n^0$$

• Then the position and orientation of the end-effector in inertia frame are given by homogeneous transformation:

$$T_n^0 = A_1(q_1)A_2(q_2)\dots A_{n-1}(q_{n-1})A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

where,

$$A_i(q_i) = \begin{bmatrix} R_i^{i-1} & o_i^{i-1} \\ 0 & 1 \end{bmatrix}$$

• Suppose that the position and orientation of the end-effector with respect to the inertia frame are:

$$o_n^0, \qquad R_n^0$$

• Then the position and orientation of the end-effector in inertia frame are given by homogeneous transformation:

$$T_n^0 = A_1(q_1)A_2(q_2)\dots A_{n-1}(q_{n-1})A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

• So, to find the forward kinematics of a manipulator, we need to find all $A_i(q_i)$ and multiply them. (Not simple!)

Table of Contents

Basic Assumptions and Terminology.

Onvertion 3 Denavit-Hartenberg Convention.

4) Assignment of Coordinate Frames.

• The idea is to represent each homogeneous transform A_i as a product of four basic transformations:

$$A_i = \operatorname{Rot}_{z,\theta_i} \operatorname{Trans}_{z,d_i} \operatorname{Trans}_{x,a_i} \operatorname{Rot}_{x,\alpha_i}$$

• The idea is to represent each homogeneous transform A_i as a product of four basic transformations:

$$A_i = \mathsf{Rot}_{z,\theta_i} \mathsf{Trans}_{z,d_i} \mathsf{Trans}_{x,a_i} \mathsf{Rot}_{x,\alpha_i}$$

Four DH parameters are required:

- **(1)** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- (2) α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i: link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- ${igea}$ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

• The idea is to represent each homogeneous transform A_i as a product of four basic transformations:

$$A_i = \mathsf{Rot}_{z,\theta_i} \mathsf{Trans}_{z,d_i} \mathsf{Trans}_{x,a_i} \mathsf{Rot}_{x,\alpha_i}$$

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i: link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- ④ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Three of these DH parameters are constant while the forth is variable θ_i or d_i .

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})

(4) θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$\begin{split} \mathcal{A}_{i} &= \operatorname{Rot}_{z,\theta_{i}}\operatorname{Trans}_{z,d_{i}}\operatorname{Trans}_{z,a_{i}}\operatorname{Rot}_{z,\alpha_{i}} \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & & \text{If we found the DH} \\ & \text{parameter, it will be} \\ & \text{easy to fill this directly} \end{split}$$

Dr. Haitham El-Hussieny

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **4** θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

The Task:

- $\bullet\,$ Given a robot manipulator with n revolute and/or prismatic joints and (n+1) links,
- We need to define coordinate frames for each link so that transformations between frames can be written in DH-convention.

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2) α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **(**) $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

link	a _i	α_i	<i>d</i> _i	θ_i
1				
2				

Dr. Haitham El-Hussieny

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2) α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **(**) $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

link	a _i	α_i	d_i	θ_{i}
1	a ₁	0	0	θ_1
2	a_2	0	0	θ_2

Dr. Haitham El-Hussieny

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2) α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- **(3)** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **(4)** $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Pr. \text{ Haitham El-Hussieny} \qquad ECE 447: \text{ Robotics Engineering} \qquad 12 / 24$$

Vo

1 X 2

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2) α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- **(3)** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- ${ig 0}$ $heta_i:$ joint angle, between x_{i-1} and x_i (measured around $z_{i-1})$

Table of Contents

Basic Assumptions and Terminology.

3 Denavit-Hartenberg Convention.

Assignment of Coordinate Frames:

- Given a robot manipulator with:
 - $\bullet \ n$ revolute and/or prismatic joints,
 - (n+1) links.

Assignment of Coordinate Frames:

- Given a robot manipulator with:
 - n revolute and/or prismatic joints,
 - (n+1) links.
- For a given robot manipulator, we need to assign the n + 1 frames from 0 to n in such a way to satisfy two conditions:
 - **(**) The axis x_1 is perpendicular to the axis z_0 ,
 - **2** The axis x_1 intersects the axis z_0 .

Assignment of Coordinate Frames:

- Given a robot manipulator with:
 - n revolute and/or prismatic joints,
 - (n+1) links.
- For a given robot manipulator, we need to assign the n+1 frames from 0 to n in such a way to satisfy two conditions:
 - **(**) The axis x_1 is perpendicular to the axis z_0 ,
 - 2) The axis x_1 intersects the axis z_0 .
- This will help to represent each transformation A_i between frame i and frame i 1 by the four DH parameters:

$$A_i = \mathsf{Rot}_{z, heta_i} \mathsf{Trans}_{z,d_i} \mathsf{Trans}_{x,a_i} \mathsf{Rot}_{x,lpha_i}$$

- **()** Step 1: Choose z_i -axis along the actuation line of joint i + 1 for frame 0 to n 1:
- If joint i + 1 is revolute, z_i is the axis of rotation of joint i + 1.
- If joint i + 1 is prismatic, z_i is the axis of translation for joint i + 1
- z_n is chosen parallel to z_{n-1} and O_n in the center of the end-effector.

② Step 2: Write the inertia coordinate frame 0:

- The origin O_0 of the base frame can be any point along z_0 .
- x_0 and y_0 are chosen arbitrary that follow the right hand coordinate systems.

③ Step 3: Assignment of axes x_i for frame 1 to frame n:

- To meet the DH conditions, the x_i-axis should intersects z_{i-1} and x_i ⊥ z_{i-1} and x_i ⊥ z_i.
 - CASE 1: z_i and z_{i-1} are **not coplanar**: then the x_i will be on the common normal to z_i and z_{i-1} and O_i is the intersection of x_i and z_i .

③ Step 3: Assignment of axes x_i for frame 1 to frame n:

- To meet the DH conditions, the x_i-axis should intersects z_{i-1} and x_i ⊥ z_{i-1} and x_i ⊥ z_i.
 - CASE 2: z_i and z_{i-1} are parallel:

 x_i is along any of the many normals between z_i and z_{i-1} . However, if x_i is along the normal that intersects at o_{i-1} , d_i will be zero (simple). O_i is the intersection of x_i and z_i .

ECE 447: Robotics Engineering 17 / 24

③ Step 3: Assignment of axes x_i for frame 1 to frame n:

- To meet the DH conditions, the x_i -axis should intersects z_{i-1} and $x_i \perp z_{i-1}$ and $x_i \perp z_i$.
 - CASE 3: z_i and z_{i-1} intersect:

Choose x_i to be normal to the plane defined by z_i and $z_{i-1} O_i$ is the intersection of z_{i-1} and z_i .

③ Step 3: Assignment of axes x_i for frame 1 to frame n:

In this example:

• z_0 and z_1 are perpendicular, x_1 is normal to both of them.

③ Step 3: Assignment of axes x_i for frame 1 to frame n:

In this example:

- z_0 and z_1 are perpendicular, x_1 is normal to both of them.
- z_1 and z_2 are parallel, x_2 is normal to both of them along line passing from O_1 .

③ Step 3: Assignment of axes x_i for frame 1 to frame n:

In this example:

- z_0 and z_1 are perpendicular, x_1 is normal to both of them.
- z_1 and z_2 are parallel, x_2 is normal to both of them along line passing from O_1 .
- z_2 and z_3 are parallel, x_3 is normal to both of them along line passing from O_2 .

③ Step 4: Assignment of axes y_i for frame 1 to frame n:

• y_i are not useful in finding the DH parameters, but we choose them in the direction that follows the RH system.

③ Step 5: Find the DH parameters and write DH table for links from 1 to n:

Four DH parameters are required:

- **(**) a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- I ink offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- ${old 0} \,\, heta_i$: joint angle, between x_{i-1} and x_i (measured around $z_{i-1})$

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:

Four DH parameters are required:

Dr. Haitham El-Hussienv

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- I ink offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **4** $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Link	a _i	α _i	d _i	θ
1				
2				
3				

ECE 447: Robotics Engineering 21 / 24

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:

Four DH parameters are required:

Dr. Haitham El-Hussienv

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- I ink offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **4** $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Link	a _i	α _i	d _i	$ heta_{i}$
1	0	90	a ₁	θ_1
2	a 2	0	0	θ_2
3	a ₃	0	0	θ_3

ECE 447: Robotics Engineering 21 / 24

Dr. Haitham El-Hussieny

ECE 447: Robotics Engineering

22 / 24

• Assign z_i along the actuation line of joint *i*.

- Assign z_i along the actuation line of joint i.
- **2** Choose x_0 and y_0 for frame 0.

- Assign z_i along the actuation line of joint i.
- **2** Choose x_0 and y_0 for frame 0.
- \bigcirc Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .

- Assign z_i along the actuation line of joint i.
- 2 Choose x_0 and y_0 for frame 0.
- \bigcirc Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .

- Assign z_i along the actuation line of joint i.
- **2** Choose x_0 and y_0 for frame 0.
- \bigcirc Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .
 - z_2 intersect z_3 . So, $x_3 \perp z_2$ and z_3 .

- Assign z_i along the actuation line of joint i.
- **2** Choose x_0 and y_0 for frame 0.
- \bigcirc Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .
 - z_2 intersect z_3 . So, $x_3 \perp z_2$ and z_3 .
- **④** Complete the coordinate frames with y_i

- Assign z_i along the actuation line of joint i.
- **2** Choose x_0 and y_0 for frame 0.
- \bigcirc Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .
 - z_2 intersect z_3 . So, $x_3 \perp z_2$ and z_3 .
- Complete the coordinate frames with y_i
- Sind DH Table for link 1, 2 and 3.

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- ${ig 0}$ $heta_i:$ joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Link	a_i	$lpha_{i}$	d_i	$ heta_i$
1				
2				
3			_	

Dr. Haitham El-Hussieny

ECE 447: Robotics Engineering

23 / 24

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- d_i: link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **(4)** $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Link	a_i	$lpha_{i}$	d_i	θ_i
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

ECE 447: Robotics Engineering

23 / 24

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i: link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- **(4)** $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$T_3^0 = A_1 A_2 A_3 = \begin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$d_{3}$$

$$d_{2}$$

$$d_{3}$$

$$d_{1} = Constant$$

$$d_{3}$$

$$d_{3}$$

$$d_{4} = Constant$$

End of Lecture

haitham.elhussieny@gmail.com

Dr. Haitham El-Hussieny

ECE 447: Robotics Engineering 24 / 24