ECE 447: Robotics Engineering

Lecture 6: Forward Kinematics

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra)

Benha University

Spring 2019

Lecture Outline:

(1) Introduction.
(2) Basic Assumptions and Terminology.
(3) Denavit-Hartenberg Convention.
(4) Assignment of Coordinate Frames.

Table of Contents

(1) Introduction.
(2) Basic Assumptions and Terminology.
(3) Denavit-Hartenberg Convention.
(4) Assignment of Coordinate Frames.

Introduction:

A manipulator is a kinematic chain composed by a series of rigid bodies, the links, connected by joints that allow a relative motion.

In robotic manipulation we are concerned with two common kinematic problems:

Forward Kinematics

Inverse Kinematics

Introduction:

A manipulator is a kinematic chain composed by a series of rigid bodies, the links, connected by joints that allow a relative motion.

In robotic manipulation we are concerned with two common kinematic problems:

Given: Joint Variables \mathbf{q} (θ or d) Required: Position and orientation of end-effector, \mathbf{p}.

$$
\mathbf{p}=f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=f(\mathbf{q})
$$

Introduction:

A manipulator is a kinematic chain composed by a series of rigid bodies, the links, connected by joints that allow a relative motion.

In robotic manipulation we are concerned with two common kinematic problems:
Inverse Kinematics

Given: Position and orientation of end-effector, \mathbf{p}.
Required: Joint Variables $\mathbf{q}(\theta$ or d) to get \mathbf{p}

$$
\mathbf{q}=f(\mathbf{p})
$$

Introduction:

A manipulator is a kinematic chain composed by a series of rigid bodies, the links, connected by joints that allow a relative motion.

In robotic manipulation we are concerned with two common kinematic problems:

In this lecture, we will show how to find the Forward Kinematics of a rigid manipulator. Given the joints values and the pose of the end-effector is required.

Table of Contents

(1) Introduction.
(2) Basic Assumptions and Terminology.
(3) Denavit-Hartenberg Convention.
4. Assignment of Coordinate Frames.

Basic Assumptions and Terminology:

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
- revolute joint (a rotation by an angle about fixed axis).
- prismatic joint (a displacement along a single axis).

Basic Assumptions and Terminology:

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
- revolute joint (a rotation by an angle about fixed axis).
- prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have $n+1$ links.

Basic Assumptions and Terminology:

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
- revolute joint (a rotation by an angle about fixed axis).
- prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have $n+1$ links.
- We number joints from 1 to n, and links from 0 to n. So that joint i connects links $i-1$ and i.

Basic Assumptions and Terminology:

- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
- revolute joint (a rotation by an angle about fixed axis).
- prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have $n+1$ links.
- We number joints from 1 to n, and links from 0 to n. So that joint i connects links $i-1$ and i.
- The location of joint i is fixed with respect to the link $i-1$.

Basic Assumptions and Terminology:

- When joint i is actuated, the link i moves. Hence the link 0 is fixed.

Basic Assumptions and Terminology:

- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- With the $i^{\text {th }}$ joint, we associate joint variable:

$$
q_{i}=\left\{\begin{array}{cc}
\theta_{i}, & \text { if joint } i \text { is revolute } \\
d_{i}, & \text { if joint } i \text { is prismatic }
\end{array}\right\}
$$

Basic Assumptions and Terminology:

- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- With the $i^{\text {th }}$ joint, we associate joint variable:

$$
q_{i}=\left\{\begin{array}{cc}
\theta_{i}, & \text { if joint } i \text { is revolute } \\
d_{i}, & \text { if joint } i \text { is prismatic }
\end{array}\right\}
$$

- For each link we attached rigidly the coordinate frame, $o_{i} x_{i} y_{i} z_{i}$ for the link i.

Basic Assumptions and Terminology:

- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- With the $i^{t h}$ joint, we associate joint variable:

$$
q_{i}=\left\{\begin{array}{cc}
\theta_{i}, & \text { if joint } i \text { is revolute } \\
d_{i}, & \text { if joint } i \text { is prismatic }
\end{array}\right\}
$$

- For each link we attached rigidly the coordinate frame, $o_{i} x_{i} y_{i} z_{i}$ for the link i.
- The frame $o_{0} x_{0} y_{0} z_{0}$ attached to the base is referred to as inertia frame.

Basic Assumptions and Terminology:

- If A_{i} is the homogeneous transformation that gives the position and orientation of frame $o_{i} x_{i} y_{i} z_{i}$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.

Example of elbow manipulator

Basic Assumptions and Terminology:

- If A_{i} is the homogeneous transformation that gives the position and orientation of frame $o_{i} x_{i} y_{i} z_{i}$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.

Example of elbow manipulator

Basic Assumptions and Terminology:

- If A_{i} is the homogeneous transformation that gives the position and orientation of frame $o_{i} x_{i} y_{i} z_{i}$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.
- The matrix A_{i} is changing as robot configuration changes and it is a function of the joint variables q_{i} i.e. $A_{i}\left(q_{i}\right)$.

Example of elbow manipulator

Basic Assumptions and Terminology:

- If A_{i} is the homogeneous transformation that gives the position and orientation of frame $o_{i} x_{i} y_{i} z_{i}$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.
- The matrix A_{i} is changing as robot configuration changes and it is a function of the joint variables q_{i} i.e. $A_{i}\left(q_{i}\right)$.
- The matrix T_{j}^{i} is the homogeneous transformation that expresses the position and orientation of frame $\{j\}$ with respect to frame $\{i\}$:

$$
T_{j}^{i}=\left\{\begin{array}{ll}
A_{i+1} A_{i+2} \ldots A_{j-1} A_{j} & \text { if } i<j \\
\mathcal{I} & \text { if } i=j \\
\left(T_{i}^{j}\right)^{-1} & \text { if } i>j
\end{array}\right\}
$$

Example of elbow manipulator

Basic Assumptions and Terminology:

- Suppose that the position and orientation of the end-effector with respect to the inertia frame are:

$$
o_{n}^{0}, \quad R_{n}^{0}
$$

- Then the position and orientation of the end-effector in inertia frame are given by homogeneous transformation:

$$
T_{n}^{0}=A_{1}(q 1) A_{2}\left(q_{2}\right) \ldots A_{n-1}\left(q_{n-1}\right) A_{n}\left(q_{n}\right)=\left[\begin{array}{cc}
R_{n}^{0} & o_{n}^{0} \\
0 & 1
\end{array}\right]
$$

where,

$$
A_{i}\left(q_{i}\right)=\left[\begin{array}{cc}
R_{i}^{i-1} & o_{i}^{i-1} \\
0 & 1
\end{array}\right]
$$

Example of elbow manipulator

Basic Assumptions and Terminology:

- Suppose that the position and orientation of the end-effector with respect to the inertia frame are:

$$
o_{n}^{0}, \quad R_{n}^{0}
$$

- Then the position and orientation of the end-effector in inertia frame are given by homogeneous transformation:
$T_{n}^{0}=A_{1}(q 1) A_{2}\left(q_{2}\right) \ldots A_{n-1}\left(q_{n-1}\right) A_{n}\left(q_{n}\right)=\left[\begin{array}{cc}R_{n}^{0} & o_{n}^{0} \\ 0 & 1\end{array}\right]$
- So, to find the forward kinematics of a manipulator, we need to find all $A_{i}\left(q_{i}\right)$ and multiply them. (Not simple!)

Example of elbow manipulator

Table of Contents

(1) Introduction.
(2) Basic Assumptions and Terminology.
(3) Denavit-Hartenberg Convention.
(4) Assignment of Coordinate Frames.

Denavit-Hartenberg Convention:

- The idea is to represent each homogeneous transform A_{i} as a product of four basic transformations:

$$
A_{i}=\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}}
$$

Denavit-Hartenberg Convention:

- The idea is to represent each homogeneous transform A_{i} as a product of four basic transformations:

$$
A_{i}=\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}}
$$

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Denavit-Hartenberg Convention:

- The idea is to represent each homogeneous transform A_{i} as a product of four basic transformations:

$$
A_{i}=\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}}
$$

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Three of these DH parameters are constant while
 the forth is variable θ_{i} or d_{i}.

Denavit-Hartenberg Convention:

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

$$
\begin{aligned}
A_{i} & =\operatorname{Rot}_{2, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x_{, \alpha} \alpha_{i}} \\
& =\left[\begin{array}{ccccccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]<\begin{array}{l}
\text { If we found the DH } \\
\text { parameter, it will be }
\end{array}
\end{aligned}
$$

Denavit-Hartenberg Convention:

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

The Task:

- Given a robot manipulator with n revolute and/or prismatic joints and $(n+1)$ links,
- We need to define coordinate frames for each link so that transformations between frames can be written in DH-convention.

Denavit-Hartenberg Convention:

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

link	a_{i}	α_{i}	d_{i}	θ_{i}
1				
2				

Denavit-Hartenberg Convention:

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}
2	a_{2}	0	0	θ_{2}

Denavit-Hartenberg Convention:

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

$$
A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
c_{2} & -s_{2} & 0 & a_{2} c_{2} \\
s_{2} & c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Denavit-Hartenberg Convention:

Example: Suppose the coordinate frames are assigned.

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

$$
T_{2}^{0}=A_{1} A_{2}=\left[\begin{array}{cccc}
c_{12} & -s_{12} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} & c_{12} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Table of Contents

(1) Introduction.
(2) Basic Assumptions and Terminology.
(3) Denavit-Hartenberg Convention.
(4) Assignment of Coordinate Frames.

Assignment of Coordinate Frames:

- Given a robot manipulator with:
- n revolute and/or prismatic joints,
- $(n+1)$ links.

Assignment of Coordinate Frames:

- Given a robot manipulator with:
- n revolute and/or prismatic joints,
- $(n+1)$ links.
- For a given robot manipulator, we need to assign the $n+1$ frames from 0 to n in such a way to satisfy two conditions:
(1) The axis x_{1} is perpendicular to the axis z_{0},
(2) The axis x_{1} intersects the axis z_{0}.

Assignment of Coordinate Frames:

- Given a robot manipulator with:
- n revolute and/or prismatic joints,
- $(n+1)$ links.
- For a given robot manipulator, we need to assign the $n+1$ frames from 0 to n in such a way to satisfy two conditions:
(1) The axis x_{1} is perpendicular to the axis z_{0},
(2) The axis x_{1} intersects the axis z_{0}.
- This will help to represent each transformation A_{i} between frame i and frame $i-1$ by the four DH parameters:

$$
A_{i}=\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}}
$$

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(1) Step 1: Choose z_{i}-axis along the actuation line of joint $i+1$ for frame 0 to $n-1$:

- If joint $i+1$ is revolute, z_{i} is the axis of rotation of joint $i+1$.
- If joint $i+1$ is prismatic, z_{i} is the axis of translation for joint $i+1$
- z_{n} is chosen parallel to z_{n-1} and O_{n} in the center of the end-effector.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(2) Step 2: Write the inertia coordinate frame 0 :

- The origin O_{0} of the base frame can be any point along z_{0}.
- x_{0} and y_{0} are chosen arbitrary that follow the right hand coordinate systems.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(3) Step 3: Assignment of axes x_{i} for frame 1 to frame n :

- To meet the DH conditions, the x_{i}-axis should intersects z_{i-1} and $x_{i} \perp z_{i-1}$ and $x_{i} \perp z_{i}$.
- CASE 1: z_{i} and z_{i-1} are not coplanar: then the x_{i} will be on the common normal to z_{i} and z_{i-1} and O_{i} is the intersection of x_{i} and z_{i}.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:

(3) Step 3: Assignment of axes x_{i} for frame 1 to frame n :

- To meet the DH conditions, the x_{i}-axis should intersects z_{i-1} and $x_{i} \perp z_{i-1}$ and $x_{i} \perp z_{i}$.
- CASE 2: z_{i} and z_{i-1} are parallel:
x_{i} is along any of the many normals between z_{i} and z_{i-1}. However, if x_{i} is along the normal that intersects at o_{i-1}, d_{i} will be zero (simple). O_{i} is the intersection of x_{i} and z_{i}.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(3) Step 3: Assignment of axes x_{i} for frame 1 to frame n :

- To meet the DH conditions, the x_{i}-axis should intersects z_{i-1} and $x_{i} \perp z_{i-1}$ and $x_{i} \perp z_{i}$.
- CASE 3: z_{i} and z_{i-1} intersect: Choose x_{i} to be normal to the plane defined by z_{i} and $z_{i-1} O_{i}$ is the intersection of z_{i-1} and z_{i}.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(3) Step 3: Assignment of axes x_{i} for frame 1 to frame n :

In this example:

- z_{0} and z_{1} are perpendicular, x_{1} is normal to both of them.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(3) Step 3: Assignment of axes x_{i} for frame 1 to frame n :

In this example:

- z_{0} and z_{1} are perpendicular, x_{1} is normal to both of them.
- z_{1} and z_{2} are parallel, x_{2} is normal to both of them along line passing from O_{1}.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(3) Step 3: Assignment of axes x_{i} for frame 1 to frame n :

In this example:

- z_{0} and z_{1} are perpendicular, x_{1} is normal to both of them.
- z_{1} and z_{2} are parallel, x_{2} is normal to both of them along line passing from O_{1}.
- z_{2} and z_{3} are parallel, x_{3} is normal to both of them along line passing from O_{2}.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(1) Step 4: Assignment of axes y_{i} for frame 1 to frame n :

- y_{i} are not useful in finding the DH parameters, but we choose them in the direction that follows the RH system.

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:
(6) Step 5: Find the DH parameters and write DH table for links from 1 to n :

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1				
2				
3				

Dr. Haitham El-Hussieny

Assignment of Coordinate Frames:

Algorithm for Assigning the Coordinate Frames:

Four DH parameters are required:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Link	a_{i}	α_{i}	d_{i}	θ_{i}
$\mathbf{1}$	0	90	a_{1}	θ_{1}
$\mathbf{2}$	a_{2}	0	0	θ_{2}
3	a_{3}	0	0	θ_{3}

Assignment of Coordinate Frames:
Example:

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.
(2) Choose x_{0} and y_{0} for frame 0 .

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.
(2) Choose x_{0} and y_{0} for frame 0 .
(3) Find x_{i} :

- z_{0} intersects with z_{1}. So, $x_{1} \perp z_{0}$ and z_{1}.

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.
(2) Choose x_{0} and y_{0} for frame 0 .
(3) Find x_{i} :

- z_{0} intersects with z_{1}. So, $x_{1} \perp z_{0}$ and z_{1}.
- $z_{1} \perp z_{2}$. So, $x_{2} \perp z_{1}$ and z_{2}.

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.
(2) Choose x_{0} and y_{0} for frame 0 .
(3) Find x_{i} :

- z_{0} intersects with z_{1}. So, $x_{1} \perp z_{0}$ and z_{1}.
- $z_{1} \perp z_{2}$. So, $x_{2} \perp z_{1}$ and z_{2}.
- z_{2} intersect z_{3}. So, $x_{3} \perp z_{2}$ and z_{3}.

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.
(2) Choose x_{0} and y_{0} for frame 0 .
(3) Find x_{i} :

- z_{0} intersects with z_{1}. So, $x_{1} \perp z_{0}$ and z_{1}.
- $z_{1} \perp z_{2}$. So, $x_{2} \perp z_{1}$ and z_{2}.
- z_{2} intersect z_{3}. So, $x_{3} \perp z_{2}$ and z_{3}.
(9) Complete the coordinate frames with y_{i}

Assignment of Coordinate Frames:

Example:
(1) Assign z_{i} along the actuation line of joint i.
(2) Choose x_{0} and y_{0} for frame 0 .
(3) Find x_{i} :

- z_{0} intersects with z_{1}. So, $x_{1} \perp z_{0}$ and z_{1}.
- $z_{1} \perp z_{2}$. So, $x_{2} \perp z_{1}$ and z_{2}.
- z_{2} intersect z_{3}. So, $x_{3} \perp z_{2}$ and z_{3}.
(9) Complete the coordinate frames with y_{i}
(3) Find DH Table for link 1, 2 and 3.

Assignment of Coordinate Frames:

Example:

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1				
2				
3				

Assignment of Coordinate Frames:

Example:

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	0	d_{1}	θ_{1}^{*}
2	0	-90	d_{2}^{*}	0
3	0	0	d_{3}^{*}	0

Assignment of Coordinate Frames:

Example:

Four DH parameters are required:
(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})

$$
T_{3}^{0}=A_{1} A_{2} A_{3}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

End of Lecture

haitham.elhussieny@gmail.com

